skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Serrano, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We analyse distributions of the spatial scales of coherent intermittent structures – current sheets – obtained from fully kinetic, two-dimensional simulations of relativistic turbulence in a collisionless pair plasma using unsupervised machine-learning data dissection. We find that the distribution functions of sheet length (longest scale of the analysed structure in the direction perpendicular to the dominant guide field) and r_c (radius of a circle fitted to the structures) can be well-approximated by power-law distributions, indicating self-similarity of the structures. The distribution for the sheet width (shortest scale of the structure) peaks at the kinetic scales and decays exponentially at larger values. The data shows little or no correlation between width and length, as expected from theoretical considerations. The typical r_c depends linearly on length, which indicates that the sheets all have a similar curvature relative to their sizes. We find a weak correlation between r_c and width. Our results can be used to inform realistic magnetohydrodynamic subgrid models for plasma turbulence in high-energy astrophysics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. The concise total syntheses of oxidized norcembranoid terpenoids (−)-scabrolide A and (−)-yonarolide have been accomplished in 10 and 11 steps, respectively. The carbocyclic skeleton was efficiently constructed from two chiral-pool-derived fragments, including a [5,5]-bicyclic lactone accessed through a powerful Ni-catalyzed pentannulation of functionalized cyclopentenone with methylenecyclopropane and subsequent fragmentation. Additional features included a Liebeskind–Srogl coupling, induction of a cyclization/elimination cascade by a zinc-amido base, and installation of a sensitive enedione motif by late-stage γ-oxidation. 
    more » « less
  3. Abstract In this paper, we continue our study on the evolution of black holes (BHs) that receive velocity kicks at the origin of their host star cluster potential. We now focus on BHs in rotating clusters that receive a range of kick velocities in different directions with respect to the rotation axis. We perform N-body simulations to calculate the trajectories of the kicked BHs and develop an analytic framework to study their motion as a function of the host cluster and the kick itself. Our simulations indicate that for a BH that is kicked outside of the cluster’s core, as its orbit decays in a rotating cluster the BH will quickly gain angular momentum as it interacts with stars with high rotational frequencies. Once the BH decays to the point where its orbital frequency equals that of local stars, its orbit will be circular and dynamical friction becomes ineffective since local stars will have low relative velocities. After circularization, the BH’s orbit decays on a longer time-scale than if the host cluster was not rotating. Hence BHs in rotating clusters will have longer orbital decay times. The time-scale for orbit circularization depends strongly on the cluster’s rotation rate and the initial kick velocity, with kicked BHs in slowly rotating clusters being able to decay into the core before circularization occurs. The implication of the circularization phase is that the probability of a BH undergoing a tidal capture event increases, possibly aiding in the formation of binaries and high-mass BHs. 
    more » « less